Reflection
Change in the direction of propagation of a wave that strikes a boundary between different media through which it cannot pass. When a wave strikes such a boundary it bounces back, or is reflected, just as a ball bounces off the floor. The angle of incidence is the angle between the path of the wave and a line perpendicular to the boundary. The angle of reflection is the angle between the same line and the path of the reflected wave. All reflected waves obey the law of reflection, which states that the angle of reflection is equal to the angle of incidence. The reflectivity of a material is the fraction of energy of the oncoming wave that is reflected by it.
Refraction
Change in direction of a wave as it leaves one medium and enters another. Waves, such as sound and light waves, travel at different speeds in different media. When a wave enters a new medium at an angle of less than 90°, the change in speed occurs sooner on one side of the wave than on the other, causing the wave to bend, or refract. When water waves approach shallower water at an angle, they bend and become parallel to the shore. Refraction explains the apparent bending of a pencil when it is partly immersed in water and viewed from above the surface. It also causes the optical illusion of the mirage.
Diffraction
The bending of light, or other waves, into the region of the geometrical shadow of an obstacle. More exactly, diffraction refers to any redistribution in space of the intensity of waves that results from the presence of an object that causes variations of either the amplitude or phase of the waves. Most diffraction gratings cause a periodic modulation of the phase across the wavefront rather than a modulation of the amplitude. Although diffraction is an effect exhibited by all types of wave motion, this article will deal only with electromagnetic waves, especially those of visible light. For discussion of the phenomenon as encountered in other types of waves.
Rectilinear Propagation
Rectilinear propagation is a wave property which states that waves propagate (move or spread out) in straight lines. This property applies to both transverse and longitudinal waves. Even though a wave front may be bent (the waves created by a rock hitting a pond) the individual waves are moving in straight lines.
Interference
When two or more waves interact and combine, they interfere with one another. But interference is not necessarily bad: waves may interfere constructively, resulting in a wave larger than the original waves. Or, they may interfere destructively, combining in such a way that they form a wave smaller than the original ones. Even so, destructive interference may have positive effects: without the application of destructive interference to the muffler on an automobile exhaust system, for instance, noise pollution from cars would be far worse than it is. Other examples of interference, both constructive and destructive, can be found wherever there are waves: in water, in sound, in light.